Model API Reference
assert_model
A builder for model performance assertions.
from ml_assert import assert_model
# Create model assertions
assert_model(y_true, y_pred, y_scores) \
.accuracy(min_score=0.80) \
.precision(min_score=0.80) \
.recall(min_score=0.80) \
.f1(min_score=0.80) \
.roc_auc(min_score=0.90) \
.validate()
Methods
accuracy(min_score)
Asserts minimum accuracy score.
Parameters:
- min_score
: Minimum acceptable accuracy score (0.0 to 1.0)
Returns:
- self
for method chaining
precision(min_score)
Asserts minimum precision score.
Parameters:
- min_score
: Minimum acceptable precision score (0.0 to 1.0)
Returns:
- self
for method chaining
recall(min_score)
Asserts minimum recall score.
Parameters:
- min_score
: Minimum acceptable recall score (0.0 to 1.0)
Returns:
- self
for method chaining
f1(min_score)
Asserts minimum F1 score.
Parameters:
- min_score
: Minimum acceptable F1 score (0.0 to 1.0)
Returns:
- self
for method chaining
roc_auc(min_score)
Asserts minimum ROC AUC score.
Parameters:
- min_score
: Minimum acceptable ROC AUC score (0.0 to 1.0)
Returns:
- self
for method chaining
validate()
Executes all chained assertions.
Raises:
- AssertionError
if any assertion fails